Many-legged maneuverability: dynamics of turning in hexapods
نویسندگان
چکیده
Remarkable similarities in the vertical plane of forward motion exist among diverse legged runners. The effect of differences in posture may be reflected instead in maneuverability occurring in the horizontal plane. The maneuver we selected was turning during rapid running by the cockroach Blaberus discoidalis, a sprawled-postured arthropod. Executing a turn successfully involves at least two requirements. The animal's mean heading (the direction of the mean velocity vector of the center of mass) must be deflected, and the animal's body must rotate to keep the body axis aligned with the heading. We used two-dimensional kinematics to estimate net forces and rotational torques, and a photoelastic technique to estimate single-leg ground-reaction forces during turning. Stride frequencies and duty factors did not differ among legs during turning. The inside legs ended their steps closer to the body than during straight-ahead running, suggesting that they contributed to turning the body. However, the inside legs did not contribute forces or torques to turning the body, but actively pushed against the turn. Legs farther from the center of rotation on the outside of the turn contributed the majority of force and torque impulse which caused the body to turn. The dynamics of turning could not be predicted from kinematic measurements alone. To interpret the single-leg forces observed during turning, we have developed a general model that relates leg force production and leg position to turning performance. The model predicts that all legs could turn the body. Front legs can contribute most effectively to turning by producing forces nearly perpendicular to the heading, whereas middle and hind legs must produce additional force parallel to the heading. The force production necessary to turn required only minor alterations in the force hexapods generate during dynamically stable, straight-ahead locomotion. A consideration of maneuverability in the horizontal plane revealed that a sprawled-postured, hexapodal body design may provide exceptional performance with simplified control.
منابع مشابه
بررسی تاثیر فرم هندسی دُم بر مانورپذیری شناور زیرسطحی هوشمند
In this paper the effect of tail form on maneuverability of autonomous underwater vehicle is investigated. In the beginning, tail form is defined using a mathematical function dependent on two parameters including length of the tail and its cone angle. Then the effect of these two parameters on the hydrodynamic coefficients and maneuverability is investigated respectively. Hydrodynamic damping ...
متن کاملEffect of Gap Acceptance Behavior of the Right Turning Vehicles on the Major Road Stream for Uncontrolled Three-Legged Intersections under Mixed Traffic Conditions
Uncontrolled intersections are the intersections where there are no external signs or signals to control the movement of vehicles. In mixed traffic conditions priority rules are often violated by the road users. In All-way-stop-controlled intersections (AWSC), the vehicle should stop themselves before they enter the intersection and should check whether any vehicles are present in the other app...
متن کاملAdditional Stability for Single-Unit Pattern Generators
Legged robots have the potential to travel where wheeled robots cannot. While legged robots have many advantages that improve their maneuverability, they are notoriously difficult to control. However, neuroevolution, which combines the nature-inspired fields of neural networks with evolutionary computation, has shown promise in this task. The aim of this paper is to extend prior work that intro...
متن کاملImage-based Method for Determining Better Walking Strategies for Hexapods
An intelligent walking strategy is vital for multi-legged robots possessing no a priori information of an environ‐ ment when traversing across discontinuous terrain. Sixlegged robots outperform other multi-legged robots in static and dynamic stability. However, hexapods require careful planning to traverse across discontinuous terrain. A hexapod walking strategy can be accomplished using a visi...
متن کاملQuantifying Dynamic Stability and Maneuverability in Legged Locomotion1
SYNOPSIS. Animals can swerve, dodge, dive, climb, turn and stop abruptly. Their stability and maneuverability are remarkable, but a challenge to quantify. Formal stability analysis can allow for quantitative comparisons within and among species. Stability analysis used in concert with a template (a simple, general model that serves as a guide for control) can lead to testable hypotheses of func...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 202 (Pt 12) شماره
صفحات -
تاریخ انتشار 1999